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The experimental results for an equilibrium boundary layer in a strong adverse 
pressure gradient flow are reported. The measurements show that similarity in the 
mean flow and the turbulent stresses has been achieved over a substantial streamwise 
distance where the skin friction coefficient is kept at a low, constant level. Although the 
Reynolds stress distribution across the layer is entirely different from the flow at zero 
pressure gradient, the ratios between the different turbulent stress components were 
found to be similar, showing that the mechanism for distributing the turbulent energy 
between the different components remains unaffected by the mean flow pressure 
gradient. Close to the surface the gradient of the mixing length was found to increase 
from K~ x 0.41 to K~ z 0.78, almost twice as high as for the zero pressure gradient case. 
Similarity in the triple correlations was also found to be good. The correlations show 
that there is a considerable diffusion of turbulent energy from the central part of the 
boundary layer towards the wall. The diffusion mechanism is caused by a second peak 
in the turbulence production, located at y / 6  x 0.45. This production was for the 
present case almost as strong as the production found near the wall. The energy budget 
for the turbulent kinetic energy also shows that strong dissipation is not restricted to 
the wall region, but is significant for most of the layer. 

1. Introduction 
Turbulent flows subjected to strong adverse pressure gradients are frequently found 

to be a challenge to prediction methods (e.g. Wilcox 1993). In the report from the 
evaluation committee of the 1968 Stanford Conference on computation of turbulent 
boundary layers (Cockrell et al. 1968) the equilibrium boundary layer in a moderate 
adverse pressure gradient of Clauser (1954) was pointed out as being the flow giving 
the most trouble. If the strong gradient quickly leads to separation, the flow in this 
region is dominated by pressure effects and the modelling of the turbulence quantities 
in this region will not be critical for the overall boundary-layer results. However, the 
problem becomes more severe in flows which are affected by strong adverse pressure 
gradients acting over considerable streamwise distances. In such flows the choice of 
turbulence model may be quite essential for the predicted results. 

The experiment to be reported here was initiated to provide more information about 
the terms that must be modelled in this type of flow. It was considered essential to 
produce a flow that was influenced by a strong adverse pressure gradient for a long 
streamwise distance for history effects to be important. From a computational point of 
view the equilibrium type of flow (defined in e.g. Clauser 1954 and Townsend 1976) 
appears attractive, since the profiles at different stations are similar when properly 
scaled, while the velocities in physical space may still undergo rapid streamwise 
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changes. Despite the experience from the 1968 Stanford Conference this should 
simplify the predictions. Equilibrium layers are also attractive when it comes to 
extracting information from the data. Once the similarity is established, gradients in 
the streamwise direction may be estimated with much higher precision than if the flow 
varies in a more random manner. 

The simplest class of similarity boundary layers is the zero pressure gradient flow. 
However, according to Townsend (1976), this is not a true equilibrium flow since some 
of the requirements for complete similarity are that the skin friction coefficient, C,, and 
the shape factor, H ,  should be constant. (See $3.1 for further discussions about 
similarity.) In the zero pressure gradient flow neither C, nor H are constant, but 
decrease slowly downstream. Since the changes are very slow, the equilibrium 
conditions are approximately satisfied. To obtain constant skin friction the flow may 
either develop on a rough surface or be submitted to some well-defined pressure 
gradient. Some equilibrium experiments have been reported with streamwise pressure 
gradients, both favourable and adverse (e.g. Clauser 1954; Stratford 1959; Bradshaw 
1967; East & Sawyer 1979). The main problem has been to maintain the equilibrium 
flow over a substantial streamwise distance when the adverse pressure gradient 
becomes significant. Clauser (1954) and East & Sawyer (1979) reported considerable 
problems in establishing their adverse pressure flows. Stratford (1959) on the other 
hand stated that he had no problems generating the much more sensitive flow of zero 
wall shear stress. Analysing pressure distribution 1 of Clauser (1954), Mellor & Gibson 
(1966) found that the non-dimensional pressure gradient parameter varied by 25 YO in 
the part of the flow claimed to be in equilibrium. Coles & Hirst (1968) found that the 
data indicate that the flow was slightly three-dimensional. 

The data of Stratford (1959), taken on the curved surface used to generate the 
pressure gradient, appear to be dubious for a number of reasons. The inlet to the test 
section was only 8 x 8 i n 2  and with a boundary-layer thickness growing to about 4 in. 
the flow must have been affected, at least in the downstream end, by the poor aspect 
ratio. Stratford pointed out that secondary flows were likely to be present in the 
downstream half of the flow. Unfortunately this is the part of the flow where 
equilibrium appears to exist (zero wall shear stress and roughly constant shape factor). 
No information about the turbulence field is available for this flow since the 
measurements were obtained using Pitot tubes. 

East & Sawyer (1979) reported measurements for seven different pressure 
distributions, four of which had adverse gradients. Only two of these (cases 4 and 7) 
reached a state of constant C, and H for a short distance (of the order of two boundary- 
layer thicknesses). Since equilibrium was assumed to exist, measurements of mean 
velocity and turbulent stresses were only reported for one station for each case. Hence 
the documentation of similarity must be considered incomplete. 

In the present study an equilibrium boundary layer was produced at high Reynolds 
numbers. A low, constant skin friction coefficient was obtained over a considerable 
streamwise distance. At the same time, the flow was kept sufficiently away from 
separation to allow conventional hot-wire measurements to be made with acceptable 
accuracy. To our knowledge only one equilibrium experiment exposed to a stronger 
pressure gradient has been reported (East & Sawyer, case 7), where detailed turbulence 
measurements have also been performed. Measurements of the mean flow and 
turbulence quantities including third-order moments are reported for all stations, 
documenting a well-established equilibrium flow even at higher-order moments. 
Sufficient information has been provided to compute the budgets for the turbulent 
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kinetic energy and the main shear stress, allowing the effects of adverse pressure 
gradients on the turbulent structure to be studied. 

2. Experimental details 
The experiment was performed in a closed return wind tunnel, fitted with an 1 1.5 : 1 

contraction leading up to a 6 m long test section as shown in figure 1. The inlet cross- 
section was 1400 x 280 mm', giving an aspect ratio of 5 : 1. The investigated boundary 
layer developed on the flat floor, made of polished aluminium plates. The pressure 
gradient was generated by means of an adjustable roof. An initial estimate for the 
shape of the roof was obtained using a boundary-layer prediction code. From this 
geometry the final shape was iterated by a number of careful adjustments. After each 
adjustment a number of velocity profiles at different streamwise positions were 
measured using Pitot tubes to check if equilibrium had been established. The final 
height of the roof above the test surface (in mm) may be expressed as 

h(x) = 280-49.9~-47.69~'+ 8 9 . 3 4 8 ~ ~  - 3 1 . 3 5 8 ~ ~  +4.434x5-O.2289x6, (1) 
where x is measured in metres from the beginning of the test section. The free-stream 
turbulence level, (u")i/Ue, at the first measurement station (x = 3.0 m) was less than 

The wall static pressure distribution was measured using 66 wall taps, 1 mm in 
diameter, connected to two SETRA transducers by means of two Scanivalves. The first 
tap was located at x = 0.1 m and the following taps were located at 0.2 m intervals. At 
1 m intervals 7 taps were distributed across the test section to allow the two- 
dimensionality of the flow to be checked. The two-dimensionality was also checked by 
measurements of the skin friction coefficient across the test section at a number of 
streamwise positions using Preston tubes. This showed that C, remained constant 
within AC, = & 1.1 x lop5 across the entire span of the test section, corresponding to 
f 18 YO of the mean value in the equilibrium region. No indications of secondary flow 
type streamwise vortices were found to be present in the boundary layer. The two- 
dimensionality of the flow in the freestream was checked at ,a number of streamwise 
stations by measuring the flow angle in the plane parallel to the test surface by means 
of an X-wire traversed across the test section. This angle was found to be symmetric 
about the centreline and to vary linearly across the flow. The maximum value was 
found close to the edge of the sidewall boundary layers where its value agreed with the 
boundary-layer growth rate. The two-dimensionality was also checked by streamwise 
integration of the momentum equation using the boundary-layer parameters from the 
profiles measured along the centreline. The momentum balance was performed along 
the guide lines of Coles & Hirst (1968) and was found to be satisfied over the entire 
measurement domain to within 1.9 % of Ui 6' at the first measurement station (x = 
3.0m). Finally velocity profiles were measured at a number of stations off the 
centreline. No systematic spanwise variations were detected. From these checks it was 
concluded that the two-dimensionality of the flow was good. 

A 2 mm trip wire, located at x = 0.05 m, was used to ensure that the boundary layer 
was turbulent. The boundary layer was allowed to develop under the influence of a 
slight favourable pressure gradient for 1 m before the adverse pressure gradient started. 
This was done to stabilize and mature the boundary layer over a short distance and to 
reduce the effect of the disturbances from the trip wire. 

Velocities were measured by means of single hot wire and X-wire probes of different 
geometries, allowing measurements of u and v, or u and w, respectively. The wires were 

0.35 Yo. 



322 P. E. SkBre and P . - i .  Krogstad 

Q 

L- 6000 mm J x = o  

FIGURE 1. Wind-tunnel working section. The first measurement station is at x = 3000 mm and 
subsequent stations are located at 200 mm intervals. Symbols used for the stations presented are also 
shown. 

made of 2.5 pm platinum - 10 % rhodium Wollaston wire, etched to a nominal wire 
length of 0.5 mm, giving a length in wall units of about I +  M 11. The wire separation 
was about Az+ M 6.5. The apex angles of the X-wire probes were kept close to 1 lo", 
since low velocities combined with high turbulence intensities, which would produce 
large instantaneous flow angles, were expected near the wall. (See Perry, Lim & 
Henbest 1987, and Krogstad, Antonia & Browne 1992, for further discussions about 
probe apex angle effects.) All wires were operated with in-house constant-temperature 
anemometers at an overheat ratio of 1.5. The hot-wire probes were calibrated in the 
tunnel free stream for velocity and angular sensitivity using the effective angle 
approach of Browne, Antonia & Chua (1989). The anemometer outputs, low-pass 
filtered at 10 kHz, were sampled at 20 kHz at 12 bit resolution to a Compaq 386 
personal computer using a 16 channel A/D system from R C Electronics. The data were 
sampled for 21 s and transferred to a VAX 3100 cluster for post-processing. 

3. Results and discussion 
3.1. Equilibrium flow 

It is generally accepted that the flows close to a solid surface exhibit similarity 
characteristics when scaled using inner variables, i.e. the friction velocity u, = (7,/p)i 
and the viscous lengthscale p/pu7. This similarity manifests itself in the well-known 
viscous sublayer and the logarithmic law of the wall. In order to have similarity also 
in the outer flow, the streamwise momentum equation shows that equilibrium in the 
velocity defect function and the shear stress profile must be assumed. This may only 
be obtained if a number of restrictions on the development of the relevant length and 
velocity scales are satisfied (Townsend 1976). These are derived from the equations of 
momentum and turbulent kinetic energy. It is found that equilibrium can only exist if 
the free-stream velocity, U,, varies as a power of the streamwise distance, i.e. U, - 
( X - X , ) - ~ ,  where x, is the virtual origin of the equilibrium state. The exponent m is 
found to be in the region 0 < m < 0.23 for non-separating adverse pressure gradient 
flows (Mellor & Gibson 1966). It also follows that the ratio of the thickness of the inner 
and outer layer must be constant and that all lengthscales must be linearly proportional 
to the same distance, i.e. L - (x-x,,). This implies a constant shape factor H = a*/@ 
where 6" is the displacement thickness and 0 the momentum thickness. Also the ratio 
between the shear and free-stream velocities, u,/Ue, must remain constant. As a 
consequence the skin friction coefficient, C,, and the non-dimensional pressure 
gradient, /3 = (8*/7,) dP/dx, become constants. When these requirements are fulfilled, 
the velocity defect profile and the Reynolds shear stress distribution should be self 
similar when scaled with the proper velocity variables. Still there is some disagreement 
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in the literature as to what the proper scaling is (see George & Castillo 1993; Perry, 
MaruSic & Li 1993). It will be shown in the next section that in the present experiment 
C, is constant in the equilibrium region. The velocity defect profiles will therefore show 
similarity whether scaled in the conventional way as (U,  - U)/u,, using u, as the proper 
velocity scale for the mean flow, or as (Ue-  U)/U, ,  as proposed by George & Castillo. 

3.2. Mean $ow 
In the present experiment a low skin friction coefficient was aimed for. Therefore 
reversed flow events may occur close to the wall, possibly introducing severe errors in 
the velocity measurements. Separation was found to appear first in the boundary layer 
developing along the curved roof used to generate the pressure gradient. After 
establishing the equilibrium layer on the test floor, we made sure that all surfaces were 
free from separated regions by means of flow visualizations using tufts. In the 
equilibrium part of the flow C, was of the order of 6.0 x or about one fifth of the 
value expected for zero pressure gradient boundary layers. According to the pulsed 
hot-wire measurements of Dengel & Fernholz (1990), C, may be as low as 3.5 x lop4 
before reversed flow is encountered. When inspecting the statistics of the velocity 
vector measured by the X-wire probes, no indications of unacceptably large flow angles 
were found. Nowhere were more than 0.4 % of the measurements found to lie outside 
*$ of the apex angle, i.e. about 30". Thus the measurements are believed to be free 
from errors connected to excessive flow angles. 

In order to quickly produce a flow with low skin friction, a strong adverse pressure 
gradient with dP/dx > 0 and d2P/dx2 > 0 was imposed on the flow, bringing it close 
to separation. To keep C, constant, the pressure gradient was then relaxed to the 
required shape (dP/dx > 0, d2P/dx2 < 0) producing a stable equilibrium boundary 
layer. The measurement stations were located at 0.2 m intervals for 3.0 d x d 5.2 m. 
Equilibrium was established for 4.0 < x < 5.0 m and only these profiles will be shown. 

The friction velocity, u,, was obtained in a number of independent ways. By applying 
a least-square fit of the law of the wall and a wake function to the measured mean 
velocity data, u, may be obtained. The Musker (1979) explicit function was used to 
represent the velocity profile. This function applies to both the viscous layer and the 
fully turbulent wall region, as well as the wake region in the outer part, where the 
Granville (1976) wake function is used. The direct numerical simulation (DNS) results 
of Spalart & Leonard (1987) and Spalart & Watmuff (1993) for turbulent boundary 
layers subjected to pressure gradients indicate that the law of the wall may be affected 
by the gradient. As the adverse pressure gradient increased, the level of the log law was 
found to shift down and the apparent value of the von Karmsin constant, K ~ ,  decreased. 
However, the functional dependency is not known and it is also possible that a part of 
this shift may be a Reynolds-number effect, since increasing the Reynolds number has 
been found to produce similar effects in zero pressure gradient DNS (Spalart 1988). 
For the analysis of the present data, conventional values were therefore used (K,  = 0.41 
and B = 5.2). 

The fit procedure contains three unknowns, u,, 17 and 6 which were obtained by 
iteration using a multi-variable optimization technique (Krogstad et al. 1992). (In this 
way the definition of the boundary-layer thickness is linked directly to the mathematical 
representation of the profile rather than to the imprecise definition of where the mean 
velocity reaches a certain fraction of the free-stream velocity, e.g. 99.5%. This 
produces values of 6 which are very sensitive to experimental scatter.) Owing to the 
strong pressure gradient, the wake parameter, 17, grew to about 7. This is more than 
10 times the value normally accepted for zero pressure gradient layers. 
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FIGURE 2. Development of boundary-layer thickness, 6, displacement thickness, S*, and 

momentum thickness, 0. 
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20.53 153.8 24.84 1.936 
20.10 167.2 27.03 1.957 
19.81 185.6 30.13 2.006 
19.42 199.7 32.54 1.999 
19.38 215.3 34.83 1.989 
18.84 231.7 37.35 1.998 
18.67 247.4 39.98 1.994 
18.30 263.7 42.98 1.998 
18.04 282.9 45.78 1.986 

G p C,X 103 Re, 
[-I [-I [-I [-I 
20.8 12.2 0.900 25400 
22.9 14.0 0.797 28420 
24.8 15.7 0.730 30910 
26.4 16.9 0.672 33020 
27.0 17.3 0.654 34570 
29.2 19.9 0.590 39120 
29.3 20.0 0.582 41580 
29.1 19.6 0.585 44420 
29.6 20.1 0.571 46250 
29.6 20.2 0.567 49180 
30.2 21.2 0.546 50980 
30.2 21.4 0.541 53970 

TABLE 1. Characteristic boundary-layer parameters in the region 3.0 < x < 5.2 m. 
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To confirm the C, found from the best fit procedure, Preston tubes of 1.0, 3.0 and 
9.0 mm outer diameter were also used, all producing the same values for C,. The skin 
friction coefficient was obtained using the calibration curves of Pate1 (1965) and all 
measurements were taken for conditions well within the 6% maximum error limits 
specified for adverse pressure gradients. The C, values obtained from the Preston tubes 
were consistently found to be slightly higher than the values obtained from the fit. This 
could be due to the high turbulence level found near the wall in this flow. The measured 
pressure signal is contaminated by the turbulent normal stresses causing the reading to 
be too high, which in turn exaggerates C,. The largest difference between C, from the 
mean velocity fit and the Preston tube reading was only of the order of 10 %, found in 
the equilibrium region where C, was at its lowest. However, the results from the two 
methods follow each other closely in the whole measurement domain as may be seen 
from figure 4(a). It should be mentioned that if the log law is shifted down by the 
pressure gradient, as suggested by the DNS results, a higher C, would be obtained from 
the fit, improving the agreement between the two methods. 

The experimental conditions are listed in table 1. These are the height of the tunnel 
at the measurement stations, as well as the distributions of the free-stream velocity, the 
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FIGURE 3. (a) Streamwise mean velocity plotted in wall variables. Symbols are defined in table 1. 
-, U/u, = 2.44 In (y") + 5.2. (b) Velocity defect profiles. 

boundary-layer and momentum thicknesses, the shape factor, the Clauser parameter, 
G = ( H -  l)/(H(:Cf)i), the non-dimensional pressure gradient, the skin friction 
coefficient from the mean velocity profile, the Reynolds number based on the 
momentum thickness, Re, and the wake strength, 17. Also given are the symbols used 
in the successive plots. At these stations equilibrium is assumed to exist. 

Figure 2 shows that the lengthscales such as 8, 6* and 0 grow linearly with the 
streamwise distance for x > 4.0 m, as required for equilibrium boundary layers. In the 
equilibrium part the lengthscales have a common origin at x, = 1.74 m. Using this 
origin the free-stream velocity distribution was fitted to the equilibrium relation U, = 
Uref(x-xo)-m giving Uref = 23.6 m s-l and m = 0.22. 

Equilibrium implies that the velocity profiles at all stations must be similar in the 
inner layer when scaled on inner variables, and in the outer layer when scaled on outer 
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FIGURE 4. (a) Streamwise distributions of skin friction coefficient, Cf, and shape factor, H .  0, best 
fit to mean velocity profiles; 0,  Preston tubes; 0,  from -m profiles. (b)  Streamwise distributions 
of 0, the Clauser factor G and 0 ,  the pressure gradient parameter p. 

variables. Figure 3 (a) documents the inner-layer similarity and shows that the wake is 
a very dominant part of this flow. (No corrections for wall effects were applied to the 
data. These effects are normally assumed to affect the measurements for y+ < 5 and 
explain the scatter in this region. Correction methods (e.g. Oka & Kostic 1972) exist 
which force the data to follow the distribution U +  = y+ close to the wall. Since these 
corrections cannot be considered to be better than curve fits they were not applied. In 
the present flow the viscous sublayer is very thin compared to the boundary-layer 
thickness and the main interest of the present paper lies in the outer-layer similarity, 
so the scatter was not considered to be serious.) The velocity defect (figure 3b) shows 
that outer-layer similarity has also been obtained. The velocity profile similarity is also 
documented in the table, since the skin friction coefficient, the shape factor and the 
Clauser parameter remain constant at about 5.7 x lo-*, 2.0 and 29.3 respectively in the 
equilibrium region. These parameters have been shown in figure 4 which documents 
that equilibrium was established for x > 4.0 m. The skin friction coefficient from the 
Preston tube in this region was about 6.0 x 

The Clauser parameter G plotted against p is shown in figure 5.  Results from some 
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previously reported equilibrium boundary-layer experiments have been included for 
comparison. The present data are seen to follow the trend of the other data well and 
agree with the relations proposed by Nash (1965) and Mellor & Gibson (1966). 

3.3. Turbulent stresses 
All normal stresses, p?, pp, p?, as well as the shear stresses - p m  and -puw were 
measured. It was shown by Krogstad & Skire (1993) that by scaling the turbulent shear 
stresses with the value of u, obtained from the best-fit procedure, similarity in the 
turbulent stresses was not obtained to the same degree as for the mean velocity. As 
commented earlier there may be some uncertainty in deriving u, this way if the exact 
level of the logarithmic layer is not known. Using the measured mean velocity profiles, 
the corresponding shear stress distribution may be computed from the streamwise 
momentum equation. Comparing this with the measured profile, another estimate for 
u, may be derived. Procedures have been devised for zero pressure gradient flows 
(e.g. Granville 1988; Li & Perry 1989). Here the method of Granville was extended 
to include the adverse pressure gradient and the gradients of the normal stresses 
(a/ax) (2-2). Although these stresses become more important as the pressure 
gradient increases, their contribution to the computed shear stress profile was only of the 
order of 3 YO of the peak value. As for the fit procedure, the mean velocity profile was 
again described using the Musker formulation. Inserted in the momentum equation 
and assuming equilibrium flow, a differential equation for the total shear stress gradient 
is derived which was integrated numerically. This equation contains U,, Z7,6 and C, as 
well as the gradients dU,/dx and d6/dx as parameters. These were well known from 
the mean velocity measurements and were applied as measured. The equation for the 
shear stress gradient is a first-order equation which only satisfies one boundary 
condition, taken to be 7 = 7, at the wall. Using the measured values for U,, I7 etc. there 
is no guarantee that the computed distribution goes exactly to zero at the boundary- 
layer edge. To satisfy this condition as well, it was found necessary to decrease d8/dx 
by 3 %  compared to the measured value. Another estimate for C, could then be 
obtained from the measured shear stresses by adjusting u, used to scale the data until 
the measured profile agreed with the calculations. 
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These estimates for C, are also shown in figure 4(a )  and the agreement with the 
Preston tubes and the profile fits is seen to be good, considering the higher uncertainties 
involved in the measurements of shear stress. C, from the shear stress profiles increases 
slightly downstream, while the estimates from the mean velocity profiles decrease 
slightly and the Preston tube data are virtually independent of x. The slight 
disagreement between the different methods is assumed to be due to experimental 
scatter, but could also indicate that the boundary layer has only reached approximate 
equilibrium. However, it should be pointed out that when the gradient in C, from the 
shear stress profiles was included in the computations for the shear stress profile, 
unacceptable results were produced. At y = 6 the calculated stress was still as high as 
7+ z 5 and could only be brought back to zero by making severe changes to the other 
parameters away from their measured values. Hence the small skin friction gradient 
appears to be incompatible with the mean velocity profiles and is therefore assumed to 
be due to experimental scatter. Using C, from the shear stress profiles to normalize 
-m, the profiles are seen to collapse well. The distribution obtained from the 
calculations is also included and the measurements are seen to follow this line closely. 

The turbulent stresses scaled in inner variables are presented in figure 6 and in outer 
variables in figure 7. Equilibrium is seen to exist for all stresses both in the inner and 
outer layer, although the scatter in p z  and p? is somewhat high. The Reynolds 
number increases by almost 50% from the first to the last station of the equilibrium 
region. As expected this is seen to produce a shift in the stress profiles towards higher 
y+ in the outer layer when scaled in inner variables. Owing to the strong pressure 
gradient, the dominant Reynolds shear stress -pm reaches values which are 
considerably higher than the wall shear stress, 7,. The maximum value is located 
roughly midway through the layer ( y / S  z 0.45) as shown in figure 7(a). The peak in 
the present experiment was -pmmax/7w z 15.7. This level must depend on the non- 
dimensional pressure gradient, since p determines the gradient of the stress profile at 
the wall. (In the immediate vicinity of the wall the shear stress distribution may be 
written (7/7,) = 1 + ( y / ~ , )  (dpldx) = 1 + (y /S*)  p.) Figure 8 shows that -pmmaz/7w 
scales linearly with p, closely following the line -pmmax/7T, = 1 +$3. The peak found 
in the present experiment agrees well with the findings of Bradshaw (1967) and East & 
Sawyer (1979). 

It may be argued that since the ratio between the maximum shear stress, -mmUx, 
and u," is very large, u, may no longer be the relevant parameter for scaling the turbulent 
stresses in the outer region and that scaling with -mmax would be preferable. 
However, owing to the similarity of the stresses it follows that other ways of scaling, 
such as rn/mmaX vs. y /S  or (mmaz-m)/mmax us. y / S  will exhibit the same degree of 
similarity. Therefore there seems to be no benefit in departing from the conventional 
use of u, as the scaling velocity for the turbulent stresses in this case. 

As discussed in $3.1 and shown by the computed shear profiles, equilibrium in the 
mean flow is closely linked to similarity in the Reynolds shear stresses. Based on the 
same type of arguments, similarity would therefore also be expected in the normal 
stress profiles if the shear stresses show similarity. The normal stresses are shown in 
figures 6(&d) and 7(&d) which document the stresses to be similar, both plotted in 
inner and outer variables. Close to the wall 3 closely follows the development of 2. 
For the intermediate range 0.03 < y / S  < 0.15 the growth rate of 2 is somewhat slower 
than for 2, before they again increase at about the same rate. It appears that in this 
intermediate range the growth of 3 is favoured to the detriment of 3. A possible 
explanation for this behaviour is offered in 54.2, where skewness and flatness 
distributions are discussed. 
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All normal stresses and the kinetic energy reach their peak values at the same 
location from the wall. By inspecting the transport equation for the turbulent stress 
qq, 

it is found that the dominant turbulence production terms for a two-dimensional 
boundary layer are - m a U p y ,  which occur in the equation for 2, and 3 tlU/ay, which 
is found in the equation for -m. These terms have been plotted in figure 9. It may be 
observed that both terms exhibit two distinct peaks, one near the wall and another 
further out at y /S  x 0.45. The exact location of the innermost peak could not be found, 
since the size limitations of the X-wire prevented measurements closer to the wall than 
about y+  x 20 - 30, but it appears reasonable to assume that it will be found at about 
y+ x 12 as observed in the zero pressure gradient case (Spalart 1988). The peak near 
the wall is caused by the increasing mean strain as the wall is approached so that the 
production increases until -im diminishes near the wall. The outer peak, however, is 
caused by the peak in the turbulent stresses and is therefore linked directly to the effect 
of the strong adverse pressure gradient. 

3.4. Mixing length 
The mixing lengths derived from the mean velocity and -m profiles are shown in 
figure 10. The slope of the mixing length near the wall, K ~ ,  is about 0.41 at the beginning 
of the logarithmic layer. This is the value normally accepted for zero pressure gradient 
flows. However, K, is seen to increase rapidly through the logarithmic layer to a value 
of K, x 0.78. This indicates a very strong dependence of K, on the pressure gradient. 
Further out (0.15 < y /S  < 0.9) the value of 1/6 remains roughly constant at 0.07 to 
0.08, slightly below the zero pressure gradient boundary-layer value. Granville (1989) 
gives a review of how the effect of pressure gradients on the mixing length is modelled 
in the inner layer and proposes the model, 

3 I Y  = K, (1 + aP+y+)+ (1 - exp (- y+( 1 + 14P+)4/26)), 
(3) 

for adverse pressure gradients. Here 

This expression is readily derived from the momentum equation except for the 
exponential function which represents a van Driest type damping. a was specified as 
being less than 1 to produce a reduction in the effective pressure gradient due to the 
mean flow inertia. This reduction was estimated by Perry, Bell & Joubert (1966) to be 
approximately one-third giving a = g, while Granville specified a = 0.9. Equation (3) 
is included in figure lO(a) and is seen to predict the mixing length well up to yf x 250. 
(The value for a specified by Granville was used since this represented the data slightly 
better than the value given by Perry et al.) 
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FIGURE 9. Contributions to turbulent production at x = 4.4 m. 

Despite the high K~ derived from the shear stress profile, the von KQrman constant 
in the logarithmic part of the mean flow, K ~ ,  was found to be the same as in the zero 
pressure gradient case. This confirms the findings of Perry et al. that ‘the pressure 
gradient does not distort the logarithmic profile but simply controls its range of 
application of y for a given wall shear velocity’. However, this does not comply with 
the DNS results. 

Glowacki & Chi (1972) investigated equilibrium flows at different values of p.  They 
found that the average K~ in the inner layer correlated well with p in such a way that 
K~ increases rapidly with p as shown in figure 11. The present results support this 
dependency. For flows where p is changing in the streamwise direction, K~ is dependent 
on the flow development and cannot be correlated directly to the local p .  For 
calculations using the mixing-length hypothesis, a rate of change equation for K~ would 
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therefore be necessary in order to predict -m properly. However, since the slope of 
the logarithmic layer in the mean flow follows directly from the mixing-length 
formulation, it is difficult to see that a simple mixing-length hypothesis can successfully 
predict these observations. 

3.5. Turbulent correlation coeficients 
The ratios between the different Reynolds normal stresses, shown figure 12(u-f>, show 
similarity for all stations. Also included are the zero pressure gradient data of 
Klebanoff (1955) at Re, x 8000 and the DNS results of Spalart (1988) for Re, = 1410. 
The agreement between the present set of measurements for strong adverse pressure 
gradients and the DNS data is about as close as between the two zero pressure gradient 
sets. This shows that the mechanism for redistributing the turbulent energy between the 
different normal stresses is virtually independent of the mean flow pressure gradient. 
As expected 2 is seen to vanish faster than u" and 2 near the wall (figure 12(a and c)) 
owing to the stronger damping of fluctuations normal to - -  the wall than in the planes 
parallel to it. For - _  the main part - _  of the boundary layer v2 /u2  is roughly constant at 
about 0.45 while w2/uz and v 2 / w 2  are about 0.6 and 0.7, respectively. Near the 
- boundary-layer edge, the ratios grow, _ -  primarily because 3 decays at a slower rate than 
u2 and 2. Therefore the ratio w2/uz is virtually independent of y / &  Shiloh, 
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Shivaprasad & Simpson (198 1 )  proposed that w" and v" are approximately equal in the 
outer 90% of the boundary layer in flows near separation. The present experiment 
verifies that the ratio does not vary dramatically, although the factor is considerably 
lower than 1 (figure 12c). 

When the spanwise normal stress 3 is not measured, it has often been assumed, e.g. 
in order to estimate the turbulent kinetic energy, that this stress may be linked to the 
other two through the relation 3 = K(?+?), where K = 0.5 (Bradshaw 1967; Cutler 
& Johnston 1989). This expression seems to overestimate 2 slightly in most of the 
layer. Both the DNS and the present data indicate that K z  0.4 should be a better 
value, although figure 12(d) shows that the factor K depends strongly on y / S  close to 

2 1 - 1  
the wall. 

Figure 12(e) shows the distribution of the correlation coefficient R,, = -m/(~)z(u2)~. 
R,, reaches a constant value for 0.2 < y / 6  < 0.7. Although the figure indicates 
that this level varies between about 0.39 and 0.46, no systematic x-dependence in the 
data could be found. It is therefore assumed that the scatter in the data represents 
measurement uncertainty rather than any physical effects. Hence its value may be 
assumed to be about 0.42 for most of the layer, in close agreement with the value found 
in boundary layers without pressure gradients. Figure 1 2 0  shows the structure 
parameter3 _ _  = - m / 2 k ,  normally taken as 0.15 in zero pressure gradient flows. (k = 
f(u2 + u2 + w2)  is the turbulent kinetic energy). In the present experiment it was found 
to be only slightly lower. 

4. Higher-order statistics 
4.1. Triple correlations 

Seven of the _ - - _ - -  nine triple correlations which may be formed from the fluctuating 
velocities, i.e. u3, u2u, uu2, u3, u2w, w3 and 3, were measured. These quantities are 
associated with the transfer and redistribution of turbulent energy in the - - -  boundary 
__ layer. The four quantities measured by an X-wire in the (x,y)-plane, are u3, u2u, u3 and 
uu2. The largest term is the first correlation (figure 13a) which represents the transport 
of 2 by turbulent motion in the streamwise direction. Its magnitude is more than 3 
times that of the other triple correlations. The next three correspond to the turbulent 
transport of 2 and v" in the direction normal to the wall, and the turbulent work done 
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by -a in the same direction. These have been shown in figures 13(bF13(d), 
respectively. For the turbulent transport normal to the wall, and 3 have opposite 
sign to 2. Below the peak _ _  in turbulence production at y / 6  z 0.45 there is a downward 
transport of energy from u2, u2 and -a, while further out the diffusion is directed 
towards the edge of the layer. Figure 13 shows that similarity in the triple products has 
also been achieved. 
- Turbulent transport of 2 and 2 in the spanwise direction is expressed by fi and 
w3, while the transport of 2 in the streamwise direction is given by 3. These terms 
were measured with an X-wire in the (x,z)-plane. The first two terms (not shown) 
which should vanish in a two-dimensional boundary layer were found to be very small. 
This supports further that the flow established is closely two-dimensional. The last 
term, plotted in figure 13(e), is showing a very slow decay below y / 6  < 0.3, while it 
follows the trend of the other correlations in the outer part of the boundary layer. This 
behaviour is similar to the development of 2 and suggests that close to the wall the 
transport of 2 is more efficient in the streamwise direction than normal to the wall. 
The correlations between the v and w fluctuations could not be measured with the 
present equipment. It may be observed that all the triple correlations show similar 
dependence of y /6 ,  crossing zero where the maximum stresses occur. The maximum 
value of the triple correlations is for all variables found in the outer part of the 
boundary layer at y / 6  x 0.75. Another maximum, of opposite sign and with a smaller 
magnitude, is found in the inner part near y /S  z 0.25. This is in contrast to the 
observations of Nagano, Tagawa & Tsuji (1991) in adverse pressure gradient flows at 
much lower Reynolds numbers (Re, 5 3350), where the inner peak was found to be the 
largest. However, the pressure gradient in the present case is considerably stronger 
which, as shown, increases the turbulent activity in the outer part of the boundary 
layer. 
__ The same _ -  type of estimate which was used for 2 is also used to evaluate 2, i.e. 
uw2 = K(u3+uu2), where K is again assumed to be 0.5 (e.g. Bradshaw 1967; Cutler & 
Johnston 1989). This seems to overestimate uw2 by a factor of two compared to the 
experimental data, as shown in figure 14. Another possibility is to use the correlation 
_ -  already obtained in figure 12(d) between 2 and ?+?, i.e. defining K =f,,(y/6) = 
w2/(u2 +?). As shown in figure 14 this gives an improvement close to the wall, but in 
the outer part 2 is still considerably overestimated. The reason for this is that 3 and 
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__ 
uw2 are roughly equal, while 3 is considerably larger (figure 13) and therefore 
dominates - -  the estimate. Except very close to the wall ( y / 6  < 0.1) a better estimate 
would be uw2 x uv2. 

In turbulence modelling triple correlations are frequently estimated from the 
Reynolds stresses using a gradient diffusion hypothesis. Hanjalic & Launder (1972) 
derived the relation 

where c, = 0.08. This relation is often simplified to 

k - a q  
U k U i U i  = -c8-uku1-, 

E ax, 
( 5 )  

which reduces the computational effort, but sacrifices the principle of Galilean 
invariance. In this expression c, has been determined to be 0.22 (Launder 1989). For 
the present boundary layer the measured triple correlations & and 2 have been 
compared to estimates from equations (4) and (5 )  in figure 15. The estimated triple 
correlations depend somewhat on the method used to extract the dissipation rate 
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(equations (8) or (10)). Here dissipation from the isotropic turbulence assumption 
(equation (8)) was used. The agreement between the computed and measured 
distribution of & is reasonably good using equation (4) in the outer layer, but the 
triple correlation is underestimated near the wall. Equation (5 )  is seen to represent the 
data well in the inner half of the layer, but overestimates the correlation by a factor of 
almost two further out. For the purpose of modelling the turbulent diffusion, it is the 
gradient with respect to y rather than the actual value of the triple correlation which 
is important. Hence, (4) is seen to underpredict the diffusion of & for y /S < 0.45, 
while ( 5 )  will overestimate diffusion by roughly the same factor for y/S > 0.45. For 3 
the shape of the correlation is captured reasonably well showing little difference for the 
two equations, but the inner peak is underestimated. In the estimates of the triple 
correlations from (5 )  it was found that these correlations - _  were completely dominated 
by the _ _  y-derivatives throughout the layer, i.e. the term u2 i3u2/i3y in the equation for & 
- and u2 i3u2/ay in the equation for 7, respectively. The measurements show that u22) and 
u3 are of the same order of magnitude. Since @/ay is considerably small than @/ay 
for most of the layer, the correlation will be overestimated in the outer layer as long 
as the constant of proportionality, c,~, is taken to be the same for both gradients. 
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figure 16.) 

4.2. Skewness andjlutness 
The skewness and flatness factors, defined as 

_ _  - -  
S, = a3/(a:');, Fa = a4/(a:')', (6) 

where a: is one of the velocity fluctuations u, v and w, respectively, have been shown in 
figures 16 and 17 for stations x = 4.0 and 5.0 m. As the distributions are similar for all 
the stations in the equilibrium region, only two stations have been shown. The 
skewness of the spanwise velocity component, S,, is negligible throughout the 
boundary layer as a consequence of the two-dimensionality. The measurements show 
that this motion is close to Gaussian ( S ,  FZ 0 and F, FZ 3) for most of the layer. 

The skewness of the streamwise velocity component, S,, is positive from the wall to 
the location of the maximum stresses. Here S, changes sign and becomes negative. This 
shows that the flow is dominated by a transport of fluid away from the outer peak in 
the turbulence production, although the Aatness factor, F,, dose to 3 throughout most 
of the layer (figure 17) indicates important contributions from motions in the opposite 
direction. In the outer layer F, follows F, closely and S,, is almost the reverse of S,, both 
changing sign at the locations where the peaks in the stresses are found. The turbulent 
structure in the vicinity of these peaks is seen to be closely Gaussian for all normal 
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stresses (S, M S, w S, w 0 and F, w 4 M F, w 3). F, falls slightly below 6 and F,, 
indicating a more narrow range of the fluctuations for u than for the other turbulent 
velocities. 

In zero pressure gradient boundary layers and channel flows S,  is found to change 
sign at y+ z 12 where the turbulent kinetic energy production has its maximum (e.g. 
Kreplin & Eckelmann 1979; Karlsson & Johansson 1988; B a h t ,  Wallace & 
Vukoslavcevic 1991). S, at this point is slightly negative, but becomes positive further 
out (y+ > 30). At the same position F, drops to a local minimum while F, reaches a 
maximum. This suggests a highly intermittent v motion slightly biased towards strong 
transport of fluid towards the wall. Although measurements could not be made 
sufficiently close to the wall to accurately locate the peak in F,, the data suggest this 
peak to be present at about the same y+. Neither the change in sign of S,  nor the 
minimum in F, at y+ M 12 were found in the present flow. This indicates a significant 
difference in the turbulent structure owing to the pressure gradient also very close to 
the wall. The change in sign of S, in the present data found near y+ w 35, from positive 
near the wall to negative further out, suggests that the strong diffusion from the outer 
production peak looses its dominance roughly at this location. However, the positive 
S,  and the high F, values indicate strong intermittent transport towards the wall well 
below this point. In the zero pressure gradient layer the opposite change of sign in S, 
is found at roughly the same position, from negative near the wall to positive further 
out (Karlsson & Johansson 1989) in a region where S, is negative. The present data 
therefore suggest that the strong pressure gradient has reversed the dominant direction 
of transport close to the surface, from being away from the wall in the zero pressure 
gradient case, to a situation dominated by motions towards the surface. (This has been 
verified by a preliminary quadrant analysis (Skire 1994) which will be reported at a 
later stage.) 

5. Budgets for turbulent kinetic energy and shear stress 

layer where streamwise gradients are also important it may be written as follows: 
The transport equation for k is obtained from (2). For a two-dimensional boundary 

. (7) 
ak ak au - - au a(Z) a(%) 1 a(vp) ,U auiaui u-+ J / -  = -m-+(v2-uz) _ _ - - ~  
ax ay aY ax ax ay ay pax,ax, - -1 - -+ 
Advection Production Diffusion pv-diffusion Dissipation 

The viscous diffusion terms are neglected, as their importance is restricted to the 
viscous region very near the wall. Only the gradient of the interaction between p and 
the v fluctuation is included, since the other gradients of the pressure-velocity 
interactions are assumed to be small. In the zero pressure gradient boundary layer, 
production and dissipation are the main contributors to the turbulent budget except 
near the edge of the layer (e.g. Bradshaw 1967; Spalart 1988). However, with increasing 
pressure gradients the advection and diffusion terms become more important. 

Most of the terms in (7), have been evaluated directly from the measured data, using 
the profiles of the mean velocity, Reynolds stresses and triple products. The terms 
which could not be measured are the triple correlation 2 and the pressure-velocity 
interaction contribution to the diffusion. 

The production of the turbulent kinetic _ _  energy is dominated by -maU/ay. Usually 
the second-order production term (0' - u2) aU/ax is not taken into account, but this 
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(b) Turbulent shear stress budget from data at x = 4.4 m. 0,  advection = 

-au s 
production = u2--; A, diffusion = 

aY 4 
-, approximate pressure-strain interaction 

term becomes more important in flows with strong pressure gradients, since the 
streamwise derivatives increase. As shown in figure 9 this term contributes up to 10 % 
of the total production in the outer part of the present boundary layer and should 
therefore not be neglected. The peak in (U”-g)aU/ax  is not coincident with the 
maximum shear stress, but is located further out (y /S  w 0.6). 

The most striking difference between the present flow and the zero-pressure-gradient 
case is that strong turbulence production does not only occur in the wall region. 
Considerable production is also found in the outer part of the boundary layer. As 
shown in figure 18 this severely affects all the terms in the turbulent energy budget. 
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Transport of the kinetic energy by diffusion receives its main contribution from i3a;klay. 
However, in the present experiment &&/ax, which is normally neglected, contributes 
10-15% of the total diffusion. To compute &Z/dy _ _  an estimate of the term 3 is 
needed. This term may be approximated as 3 = K(u2u+u3), but as pointed out by 
Anderson & Eaton (1989), this tends to overestimate this correlation. This term was 
therefore also estimated using (5 ) .  However, the two estimates were found to be very 
similar and for the contribution to the turbulent budget from diffusion, no noticeable 
differences were found. 

The diffusion process in the present experiment is split into three parts, compared to 
two in the zero pressure gradient case (see e.g. Townsend 1976). Energy is lost by 
diffusion in the domain 0.2 < y / 6  < 0.7. As for the zero-pressure-gradient flow the 
diffusion brings turbulent energy towards the boundary-layer edge. However, in 
contrast to the zero pressure gradient case there is also a strong gain in turbulent energy 
owing to diffusion for y / S  < 0.2. 

The contribution from the pressure-velocity interaction to the diffusion process 
could not be obtained. Experience from DNS (e.g. Spalart 1988) indicates that this 
effect is of minor importance, although the effect of pressure gradients is not known. 
There appears, however, to be no reason to anticipate a strong sensitivity of this term 
to the mean pressure gradient. 

The advection of kinetic energy owing to the transport by the mean flow is controlled 
by the two terms Uaklak and Vak/i3y which are of the same order of magnitude. 
However, the two terms have opposite signs. As for the zero pressure gradient flow, 
advection is only significant in the outer part of the boundary layer. In this region it 
is primarily balanced by the energy received by diffusion. 

Most of the methods used to determine the dissipation rate rely on the assumption 
that the fine scale motion at high wavenumbers approaches isotropy. This leads to the 
following expression for the dissipation rate (e.g. Hinze 1975 ; Townsend 1976), 

where the Taylor hypothesis has been used to convert the spatial derivative to a 
derivative in time. Equivalently the dissipation may be obtained from the one- 
dimensional spectral density as 

e z 1 5 1; k: E,,(k,) dk,, 
P 

(9) 

where k ,  is the wavenumber, k ,  = 2nf/U. The major contributions to (9) are obtained 
from the viscous subrange, found at the highest wave numbers. A second estimate for 
c may be derived from the inertial subrange of the energy spectrum. In this region the 
following dependency exists 

E,,(k,) = Ck$ci, 

where C is a constant. For boundary-layer flows Bradshaw (1967) obtained C =  
0.5+ lo%, a value which has been supported by other investigators for other types of 
turbulent flows (see Townsend 1976). More recently Spalart (1988) found C x 0.55 
from the DNS boundary-layer data. However, Spalart points out that some Reynolds 
number effects may be present. In the present data the inertial subrange was easily 
located when plotting ki E,,(k,) versus k,. For most of the boundary layer this function 
produced a constant level in the subrange extending for more than a decade in k,. This 
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relation also relies on the assumption of isotropy at high wavenumbers since it 
expresses how the turbulent kinetic energy is transferred from the large-scale motion 
to the scales where dissipation occurs. Since the inertial subrange is located at much 
lower wavenumbers, the degree of anisotropy in this range will be more pronounced 
and the estimates from (9) and (10) are therefore expected to be somewhat different. 
The differences between these estimates are expected to be largest close to the wall, 
owing to the strong anisotropy in this region. 

Finally, the dissipation may be found as the remainder from all the other terms in 
the turbulent kinetic energy equation. This estimate will also include the pressure 
contribution to the diffusion, as well as any errors involved in the estimate of the other 
terms in the budget. It may therefore be less accurate than the other estimates. 

ak ak aU 3i3U aZ 2 Z  
€ = u-+ V-+m--+(u - v  )-+--+-. 

ax ay ay ax ax ay 

It may be seen that the different methods give somewhat different results. The 
estimates which rely on the isotropic turbulence assumption (equations (8) or (9)) are 
found to be very similar to the results obtained by the difference (equation (1 l)), 
although the latter estimate is consistently higher. The ratio between these two types 
of estimate is nearly constant at 1.2 in the region 0.1 < y / 6  < 0.7. The results derived 
from the inertial subrange are seen to reach a higher level than the other estimates in 
the outer region, but for y / 6  < 0.1 the dissipation rate is greatly underestimated. 

The measurements also allowed an approximate budget for the turbulent shear stress 
to be computed. From (2) the following transport equation is derived: 

The viscous diffusion term has again been neglected for the same reason as given for 
the turbulent kinetic energy equation. The advection, production and the first two 
diffusion terms could be estimated directly from the measurements. The DNS 
simulations of Spalart (1988) have verified that the pressure diffusion and the shear 
stress dissipation terms are small, at least at low Reynolds numbers. The dissipation 
term, which vanishes for isotropic turbulence, is only effective at very high 
wavenumbers. Since the degree of anisotropy at the smallest scales is expected to 
decrease with increasing Reynolds number, the dissipation rate in the present flow is 
expected to play an even smaller role than in the DNS boundary layer. 

The pressure-strain interaction term cannot be measured. Hinze (1975) argued that 
this term must be of the same order of magnitude as the production term. It must, 
however, be of opposite sign, since it follows from the above discussion that this is the 
only term in the equation which can limit the growth of m. In the budget presented in 
figure 18 (b) the pressure diffusion, dissipation and pressure-strain interaction terms 
were grouped together, assuming that the pressure-strain term was the dominant 
contributor. This was obtained as the difference between the other terms in (12). 

The distributions obtained for the shear stress budget resemble closely the 
distributions for the kinetic energy. This was expected since the dominant production 
terms in the two equations were found to be very similar (figure 9). However, the 
importance of the advection and diffusion terms in the shear stress budget is 
considerably reduced, implying a close balance between the production and 
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pressurestrain interaction terms throughout most of the layer. This agrees well with 
the DNS budget of Spalart (1 988) for the zero-pressure-gradient boundary layer. 

6. Conclusions 
The results from an equilibrium boundary-layer experiment in a strong adverse 

pressure gradient have been reported. Equilibrium was obtained over a significant 
streamwise distance where the skin friction coefficient was maintained at a low 
constant level of about C, = 5.7 x In the equilibrium region, which extended for 
about 1 .O m, all mean velocity profiles were documented to be self-similar. It was also 
shown that in this region the lengthscales grow linearly with distance in accordance 
with the equilibrium requirements and that the non-dimensional pressure gradient, p, 
as well as the Clauser parameter, G, were constant. Townsend (1976) pointed out that 
equilibrium in the mean velocity may only be obtained if the turbulent stresses also 
show similarity. In the present experiment similarity in all the turbulent stresses as well 
as in the triple correlations was obtained. The gradient of the mixing length was found 
to increase from K~ “N 0.41 at the beginning of the logarithmic layer to K~ x 0.78 where 
the layer merges with the wake. This did not influence the mean velocity profile which 
followed the law of the wall closely with the conventional von Karman constant of 
K, = 0.41. 

The logarithmic law of the wall may be derived assuming negligible momentum in 
a region of constant shear stress and a linear mixing-length distribution. Within the 
logarithmic layer the shear stress increased from about 1.5 to 6.5 times the shear stress 
at the wall in the present case. Both the difference in K between the mean velocity and 
shear stress profiles and the rapid increase in shear stress in the logarithmic layer 
suggests that the logarithmic layer is much more fundamental to turbulent boundary 
layers than just being a region of approximately constant shear stress. 

The measurements showed that the ratios between the different turbulent stresses 
remained as for zero pressure gradient flows, indicating that the distribution of kinetic 
energy between the different stresses is unaffected by the pressure gradient. This was 
further verified by the correlation coefficient R,, which was found to be close to 0.42 
and the structure parameter a, found to be close to 0.15 in the bulk part of the 
boundary layer, both values in agreement with zero-pressure-gradient flows. 

The turbulence production terms showed that significant production of kinetic 
energy was present not only in the near-wall region, but also in the outer layer. This 
production in the outer layer is due to the very high turbulent shear stresses found in 
this region, the peak value being about sixteen times the wall stress. The peak level was 
found to scale linearly with the pressure gradient parameter, p. The triple correlations 
showed that there is a significant diffusion of energy away from this outer peak in 
production. In contrast to the zero-pressure-gradient boundary layer the present flow 
produces a strong turbulent diffusion towards the wall in the inner half part of the 
layer. 

As a consequence of the high turbulent stresses in the outer part, high rates of 
dissipation were no longer limited to the wall region. In addition to the thin region near 
the wall where the dissipation rate is very high, considerable dissipation was found in 
the outer layer with a second peak close to the outer maximum in the turbulent 
production rate. 



A turbulent equilibrium boundary layer near separation 347 

R E F E R E N C E S  
ANDERSON, S. D. & EATON, J. K. 1989 Reynolds stress development in pressure-driven three- 

dimensional turbulent boundary layers. J .  Fluid Mech. 202, 263-294. 
BALINT, J.-L., WALLACE, J. M. & VUKOSLAVCEVIC, P. 1991 The velocity and vorticity vector fields 

of a turbulent boundary layer. Part 2. Statistical properties. J .  Fluid Mech. 228, 53-86. 
BRADSHAW, P. 1967 The turbulent structure of equilibrium turbulent boundary layers. J .  Fluid 

Mech. 29, 625-645. 
BROWNE, L. W. B., ANTONIA, R. A. & CHUA, L. P. 1989 Calibration of X-probes for turbulent flow 

measurements. Exps Fluids 7, 201-208. 
CLAUSER, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J .  Aero. Sci. Feb., 

COCKRELL, D., HILL, P., LUMLEY, J., MORKOVIN, M. & EMMONS, H. 1968 Report from the 
evaluation committee. In Proc. Computation of Turbulent Boundary Layers, AFOSR-IFP- 
Stanford Conference (ed. S. J. Kline, M. V. Morkovin, G. Sovran & D. J. Cockrell), vol. 1, 
pp. 464-478. 

COLES, D. E. & HIRST, E. A. 1968 Memorandum on data selection. In Proc. Computation of 
Turbulent Boundary Layers, AFOSR-IFP-Stanford Conference (ed. S. J. Kline, M. V. Mor- 
kovin, G. Sovran & D. J. Cockrell), vol. 2, pp. 47-54. 

CUTLER, A. D. & JOHNSTON, J. P. 1989 The relaxation of a turbulent boundary layer in an adverse 
pressure gradient. J .  Fluid Mech. 200, 367-387. 

DENGEL, P. & FERNHOLZ, H. H. 1990 An experimental investigation of an incompressible turbulent 
boundary layer in the vicinity of separation. J.  Fluid Mech. 212, 615-636. 

EAST, L. F. & SAWYER, W. G. 1979 An investigation of the structure of equilibrium turbulent 
boundary layers. In Turbulent Boundary Layers : Experiment Theory and Modelling, AGARD 

GEORGE, W. K. & CASTILLO, L. 1993 Boundary layers with pressure gradient: another look at the 
equilibrium boundary layer. In Intl Con$ on Near- Wall Turbulent Flows (ed. R. M. C. So, C. G. 
Speziale & B. E. Launder), pp. 901-910. Elsevier. 

GLOWACKI, W. J. & CHI, S. W. 1972 Effect of pressure gradient on mixing length for equilibrium 
turbulent boundary layers. AIAA paper 72-213. 

91-108. 

CP-271, 6.1-6.19. 

GRANVILLE, P. S. 1976 A modified law of the wake for turbulent shear layers. J .  Fluids Engng 98, 
578-580. 

GRANVILLE, P. S. 1988 Eddy viscosities and mixing lengths for turbulent boundary layers on flat 
plates, smooth or rough. David W. Taylor Naval Ship Research and Development Center, 

GRANVILLE, P. S .  1989 A modified van Driest formula for the mixing length of turbulent boundary 
layers in pressure gradients. J.  Fluids Engng 111, 94-97. 

HANJALIC, K. & LAUNDER, B. E. 1972 A Reynolds stress model of turbulence and its application to 
thin shear flows. J.  Fluid Mech. 52, 609-638. 

HINZE, J. 0. 1975 Turbulence, 2nd edn. McGraw-Hill. 
KARLSSON, R. I. & JOHANSSON, T. G. 1988 LDV measurements of higher order moments of velocity 

fluctuations in a turbulent boundary layer. In Laser Anemometry in Fluid Mechanics IZI (ed. R. 
J. Adrian, T. Asanuma, D. F. G. Durao, F. Durst & J. H. Whitelaw), pp. 273-289. Ladoan- 
Instituto Superior Tecnico, Lisbon. 

KLEBANOFF, P. S. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. 
NACA Rep. 1247. 

KREPLIN, H.-P. & ECKELMANN, H. 1979 Behaviour of the three fluctuating velocity components in 
the wall region of a turbulent channel flow. Phys. Fluids 22, 1233-1239. 

KROGSTAD, P.-A., ANTONIA, R. A. & BROWNE, L. W. B. 1992 Comparison between rough and 
smooth wall turbulent boundary layers. J.  Fluid Mech. 245, 599-617. 

KROGSTAD, P.-A & SKARE, P. E. 1993 An experimental investigation of a turbulent equilibrium 
boundary layer near separation. In Intl Conf on Near- Wall Turbulent Flows (ed. R. M. C. So, C. 
G. Speziale & B. E. Launder), pp. 91 1-920. Elsevier. 

LAUNDER, B. E. 1989 Second-moment closure and its use in modelling turbulent industrial flows. Intl 
J.  Numer. Meth. Fluids 9, 963-985. 

DTNSRDC-86067. 



348 P. E. Skhre and P . - i .  Krogstad 

LI, J. D. & PERRY, A. E. 1989 Shear stress profiles in zero pressure gradient turbulent boundary 

MELLOR, G. L. & GIBSON, D. M. 1966 Equilibrium turbulent boundary layers. J.  Fluid Mech. 24, 

MUSKER, A. J. 1979 Explicit expression for the smooth wall velocity distribution in a turbulent 
boundary layer. AIAA J.  17, 655-657. 

NAGANO, Y., TAGAWA, M. & TSUJI, T. 1991 Effects of adverse pressure gradients on mean flows and 
turbulence statistics in a boundary layer. In 8th Symp. on Turbulent Shear Flows. Munich. 

NASH, J. F. 1965 Turbulent-boundary-layer behavior and the auxiliary equation. AGARDograph 97, 

OKA, S. & KOSTIC, Z. 1972 Influence of wall proximity on hot-wire velocity measurements. DISA 
Information 13, 29-33. 

PATEL, V. C. 1965 Calibration of the Preston tube and limitations on its use in pressure gradients. 
J.  Fluid Mech. 23, 185-208. 

PERRY, A. E., BELL, J. B. & JOUBERT, P. N. 1966 Velocity and temperature profiles in adverse 
pressure gradient turbulent boundary layers. J.  Fluid Mech. 25, 299-320. 

PERRY, A. E., LIM, K. L. & HENBEST, S. M. 1987 An experimental study of the turbulence structure 
in smooth- and rough-wall boundary layers. J.  Fluid Mech. 218, 405438. 

PERRY, A. E., MARUSIC, I. & LI, J. D. 1993 Recent ideas and development in the modelling of wall 
turbulence. In Intl Conf on Near- Wall Turbulent Flows (ed. R. M. C. So, C. G. Speziale & B. E. 
Launder), pp. 1029-1030. Elsevier. 

SHILOH, K., SHIVAPRASAD, B. G. & SIMPSON, R. L. 1981 The structure of a separating turbulent 
boundary layer. Part 3. Transverse velocity measurements. J .  Fluid Mech. 113, 75-90. 

S&E, P. E. 1994 Experimental investigation of an equilibrium boundary layer in strong adverse 
pressure gradient. PhD thesis, University of Trondheim, Norway. 

SPALART, P. R. 1988 Direct simulation of the turbulent boundary layer up to Re, = 1410. J.  Fluid 
Mech. 187, 61-98. 

SPALART, P. R. & LEONARD, A. 1987 Direct numerical simulation of equilibrium turbulent boundary 
layers. In Turbulent Shear Flows 5 (ed. F. Dus t ,  B. E. Launder, J. L. Lumley, F. W. Schmidt & 
J. H. Whitelaw), pp. 234-252. Springer. 

SPALART, P. R. & WATMUFF, J. H. 1993 Experimental and numerical study of a turbulent boundary 
layer with pressure gradients. J.  Fluid Mech. 249, 337-371. 

STRATFORD, B. S. 1959 An experimental flow with zero skin friction throughout its region of 
pressure rise. J.  Fluid Mech. 8, 143-155. 

TOWNSEND, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University 
Press. 

WILCOX, D. C. 1993 Turbulence Modeling for CFD. Griffin. 

layers. In loth Australasian Fluid Mech. Conf. (ed. A. E. Perry), University of Melbourne. 

225-253. 

245-279. 


